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A new approach to the s~tudy of the dynamics of a piecewise-smooth system is proposed, which uses the a priori known possible 
bifurcation structures of the parameter space. In Section 1 the synthesis of the structures of the bifurcation tree of the system 
is considered, namely, the local structures, bifurcation bands, sources and nodes. It is shown that a node corresponding to a doubling 
bifurcation with reorientation of the domain of existence can generate a sequence of increasingly complex structures. Then the 
increasing number of unstable orbits serves as one of the mechanisms giving rise to the chaotic behaviour of the dynamical system. 
In Section 2 the procedure for synthesizing the structures of the bifurcation tree of a piecewise-smooth system proposed in the 
first part of the paper is applied to the problem of the forced vibrations of a linear oscillator with impacts against a stopping 
device. Period-doubling cascades are discovered, which are accompanied by the reorientation of the domain of existence of a 
solution relative to some bifurcation surface, namely, the trunk of the tree. A set of frequency intervals is distinguished on the 
bifurcation trunk, each containing an infinite sequence of increasingly complex local structures appearing and disappearing at 
the nodes. This specific mechanism, giving rise to the chaotic motion of the oscillator, is realized in neighbourhoods of the limiting 
nodal bifurcation points. 

1. T H E  S Y N T H E S I S  O F  B I F U R C A T I O N  T R E E  S T R U C T U R E S  

Elementary local bifurcation structures. W e  shal l  c o n s i d e r  p i e c e w i s e - s m o o t h  d y n a m i c a l  sys tems 
de sc r i bed  by  e q u a t i o n s  o f  the  fo rm 

dx/dt =fix ,  t, g)  (1.1) 

where x is the n-dimensional coordinate vector, f is a vector-valued function periodic in t, and g is a 
parameter vector. 

A trajectory in an (n + 1)-dimensional phase space G corresponds to the variation of the state x( t )  of 
the system with time. The domain G is split into subdomains G1, G2, • • • ,  Gj in which the different 
subsystems are defined, each described by its own Eq. (1.1) with a sufficiently smooth right-hand side. 
The phase space trajectories of the subsystems are spliced together in some way at the boundaries of 
the domains. 

It proves convenient to reduce the analysis of a piecewise-smooth system to the analysis of the Poincar6 
mapping H(x) of the; boundaries of G1, • • •, Gj into themselves (x,,+l -- t). A stationary point x. = rl(x.) 
of the mapping will then correspond to a periodic solution. 

In what follows, when studying the dependence of the solutions of a piecewise-smooth system on the 
parameters we shall consider two kinds of bifurcations. The first is the same as in analytic systems. It 
corresponds to the loss of stability and occurs whenever an eigenvalue of the Jacobian matrix II'(x.) 
or a root of the characteristic equation 

= o (1.2) 

moves out of the unit circle. In this case k = 1, or ~. = -1, or ~. = exp(___ i9), i = ~/(-1), 0 < ¢p < ~. The 
corresponding bifurcation surfaces will be denoted by N+, N_, N, .  

I n  gene ra l ,  w h e n  the  p a r a m e t e r  b e i n g  va r i ed  crosses  the  b i f u r c a t i o n  b o u n d a r y ,  it  p roves  c o n v e n i e n t  
to desc r ibe  t he  b i f u r c a t i o n  in  t e rms  o f  local  s t ruc tures .  W i t h i n  the  fami ly  of  seven  poss ib le  e l e m e n t a r y  
N - b i fu r ca t i on  s t ruc tures  [1-4],  we restr ict  ourse lves  to  the  con f luence  of  a s table  a n d  an  u n s t a b l e  so lu t ion  
o n  N .  (Fig. l a )  
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A,a "~ fb (1.3) 

and two structures involving the loss of stability on N_ accompanied either by the confluence with an 
unstable doubly winding solution (Fig. lb) 

A,aa ~ a (1.4) 

or the appearance of a stable doubly winding solution (Fig. lc) 

A ~- a, AA (1.5) 

The C-bifurcations [3, 5, 6] constitute the other type of periodic solutions of piecewise-smooth systems. 
They involve a change in the number of pieces from which the dosed phase space trajectory (orbit), 
corresponding to the solution under consideration, is spliced together. 

We assume that in the limiting C-bifurcation setting the orbits of two solutions A (or a) and B (or 
b) are the same, the largest number of spliced pieces corresponding to the orbits B and b. 

Let ~ ( ~  g), ~b(~, g) and Z(X, g) be the characteristic polynomials whose roots X = 0~, ~ = I]i, ~ = 
~/determine the stability or instability of the aforesaid solutions and, respectively, the doubly winding 
orbitsAB and ab. It can be shown that the nature of the simplest local C-bifurcation structures depends 
on whether the following three indices, equal to the number of the corresponding real roots, are odd 
or even [5, 6] 

o+--the roots oq and [li greater than +1; 
G - - t h e  roots vq and [~/less than -1; 

+ +  2 o -- the roots cti and ~'1 greater than + 1. 
We shall restrict ourselves to five local C-bifurcation structures, namely 

A ~-- B (1.6) 

if a + = 6- = 0 (Fig. ld) 

A,b -~ ~ (1.7) 

if 6 + is odd and 6- is even (Fig. le) 

A,ab ~- b (1.8) 

i f a  + is even and 6- and o ++ are odd (Fig. lf) 

A "~ b, ab (1.9) 

i f6-  and a ++ are even and 6- is odd (Fig. lg) 

A .'~ b, AB (1.10) 
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f ro  + is even, o- is odd, and o ++ = 0 (Fig. lh). 

Synthesis of a complex local structure. Along with the original set of elementary local structures, 
additional hypotheses are necessary to turn the synthesis into a specific problem. For example, we shall 
assume that the difference between the number of stable and unstable stationary points of the Poincar6 
mapping remains unchanged for a C-bifurcation. In this case the structure (1.9) does not satisfy the 
assumption made (Fig. lg). The contradiction can be removed if the local structure is made more 
complex by a bifurcation giving rise to a stable four-fold winding orbit 

A ~- b, AAAB, ab (1.11) 

or the confluence with an unstable four-fold winding orbit 

A,aaab ~-. b, ab (1.12) 

The procedure described above enables us to synthesize sequences of increasingly complex local 
structures. The algorithm of such a eomplexification can be considered by comparing the structures 
(1.3), (1.4), as well as (1.7), (1.8), and (1.12). A common feature of the two groups of structures being 
compared is that the next doubling bifurcation is accompanied by the reorientation of the domain of 
existence of an unstable "double" orbit with respect to the bifurcation boundary (the trunk). It follows 
that the sequence of increasingly complex local C-bifurcation structures can be written as 

A,b ~- ¢; A, ab ~- b; A, aab ~- b, ab; A, a7b ~- b, ab, a3b;... 

A similar sequence can also be formally written for N-bifurcation local structures 

A,a ~ t~; A, aa ~ a; A,a 4 ~-- a, aa; A,a 3 ~-- a, aa, a4;... 

Synthesis of a bifurcation band. The problem of synthesizing bifurcation transitions containing more 
than one local structure earl be solved by a simple selection of structures from the original set ( 1.3 )--(1.10) 
if the solutions at the entry and exit of the band are known. 

For example, suppose that a dissipative non-autonomous system has a unique solutionA for Ix = 
and a finite value Ix ,corresponds to crossing the C-boundary with one of the local structures (1.7), (1.8) 
or (1.12). By selecting the structures (1.3)-(1.10), we obtain the structures of bifurcation bands L1, Lz 
and L3 satisfying all the conditions (Fig. 2). 

We will consider cme more example of the synthesis of a bifurcation band, namely, a bifurcation joint 
between the orbits AB and b and the orbit B lying in different domains of the parameter space. Two 
solutions are obviously possible, depending on the local structure introduced into the band: a confluence 
with a stable orbit of double period or the birth of an unstable doubly winding orbit (Fig. 3). In the 
former case the bifilrcation band L4 includes three local structures and in the latter L5 is synthesized 
from two structures. 

Synthesis of a bifurcation source. A structure involving the birth or death of a bifurcation tree will be 
called a bifurcation source. We consider a family of parametric trajectories Ixlo < IX1 < Ixn, IX2 = const 
and assume that no bifurcations occur when IX2 < 0, and for IX2 > 0 the straight line g2 = const intersects 

t~,xN\\'q 
zz z e z., 

Fig. 2. 
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the bifurcation boundaries forming the bifurcation band. Obviously, its structure must ensure that the 
solutions are the same at the entry and exit of the band. 

In the examples in Fig. 4 the parametric singular point (source) is indicated by an asterisk. One can 
talk of a source generating soft bifurcation transitions or safe boundaries, rigid transitions or dangerous 
boundaries (Fig. 4a), rigid transitions or dangerous boundaries (Fig. 4b, c), and a source giving rise to 
mixed boundaries (Fig. 4d) [7]. 

Remar/~. 1. The bifurcation sources form folds (simple or multi-sheeted) in a three-dimensional parameter space. 
2. For clarity the variations in a system under a rigid transition can be represented in some "hybrid" space. If, 

in addition to the physical (control) parameters, one also takes as the coordinates some indices characterizing the 
behaviour of the system (inner parameters), which are functions of the control parameters, then the simplest 
bifurcation fold will correspond to Whitney's fold [8, 9]. 

Synthesis of the structure of the trunk of the bifurcation tree. Bifurcation nodes. Next we consider the 
synthesis of a continuous transition between different local structures when the parameters vary along 
some boundary or the trunk of a bifurcation tree. We shall show that such structures are separated by 
a node on the trunk of the tree. 

We will confine ourselves to the case of two control parameters such that the C-boundary can be 
specified in the plane of these parameters. We consider a family of closed parametric trajectories, for 
example, circles centred on C at a point separating different local structures. Different local structures 
will then be present at the points of intersection of C and an arbitrary circle. 

We take the arc length ~tl and the radius P2 as new control parameters for the family of circles 
introduced. Setting P2 = const, we choose the initial and final values ~q0 = Pu of the variable parameter 
in the domain with known solutions. As a result, we arrive at the problem of synthesizing a bifurcation 
band considered above. Naturally, along with the local structures, the bands L i already synthesized can 
now be used as the elements being synthesized (Fig. 5). 

We assume that the problem of synthesis has been solved for P2 > 0 and that bifurcation transitions 
between all solutions of the system have been established for 0 < ~tl < 2n. Then, using the bifurcation 
pattern around the circle, which is already known, it remains to explain the deformation it will undergo 
as P2 ~ 0. The width of different bifurcation bands on the circle will also tend to zero as P2 ~ 0. This 
is so because different bands cannot intersect one another due to the assumption that the local structures 
are different on either side of the centre of the circle. 
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The transition f~om one local structure to another as one moves along the trunk must therefore involve 
their birth and death at a point, which is a bifurcation node. 

In Fig. 6 we show the result of the synthesis of a bifurcation node for the transition between the local 
structures A, b ~ ~ and A, ab ~ b as the parameter changes along the C-boundary considered as the 
tnmk of the bifurcation tree. The structure of the node can be constructed using the three bifurcation 
bands L1, L2 and L3 already synthesized, which are presented in Fig. 2. 

Reorientation of the domain of existence of the orbit b with respect to the C-boundary occurs in the 
case considered above. Therefore, as one moves along the trunk, the local structures must change 
continuously due to their birth and death at the bifurcation nodes. 

Remark. By a special choice of control parameters the bifurcation structures of a node and a source 
can be deformed into one another. For such a deformation of the node presented in Fig. 6 it suffices 
to change to control parameters using a family of parabolas, namely, btl along a parabola and ~t2 along 
the locus of the vertices of the parabolas. 

Synthesis of  the structure of  the trunk of  a bifurcation tree, the complexity o f  which increases without limit. 
The structure of a nc~e generated by a doubling bifurcation with reorientation of the domain of existence 
(Fig. 6) has a remarkable feature, namely, it admits of subsequent "alignment" of one component with 
another. The increasing number of unstable orbits compensating the number of revolutions of the stable 
orbits, which is doubled every time, represents one of the mechanisms giving rise to the chaotic behaviour 
of the dynamical system. If the bifurcation structure of a node is represented in its infinitesimal 
neighbourhood, in which case the width of the bands L r L 3  can be neglected, then the trunk of the 
bifurcation tree will ihave the structure shown in Fig. 7. 

A A A A 

Fig. 7. 
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2. THE P A R A M E T R I C  P O R T R A I T  OF AN O S C I L L A T O R  WITH IMPACT 
AGAINST A STOPPING D E V I C E  

On the location of  the trunk of  the bifurcation tree. For the majority of strongly non-linear systems it 
is impossible to construct all bifurcation boundaries. Along with this, in individual eases a specific 
regularity is considered in the division of the parameter space, which makes it possible to talk of the 
characteristic bifurcation tree or the parametric portrait of the dynamical system. There is a class of 
non-linear characteristics giving rise to a bifurcation picture typical for it. The oscillating system turns 
out to be robust with respect to this class of characteristics [6, 10]. 

In this respect, an oscillator with impacts against a stopping device turns out to be quite an effective 
basic model. The point is that if the stopping device is placed at a distance d greater than the amplitude 
X of forced oscillations P(t), the system remains linear. This enables us to write down the elementary 
and, along with this, the exact equation of the tnmk of the bifurcation tree in the form 

d = P(t)max = X (2.1) 

No impact-free solution can exist when x < d. Equation (2.1) corresponds to the C-bifurcation 
boundary defining transitions between the linear and non-linear systems. As a result, as soon as the 
problem is stated, one knows the position in the parameter space of the "scene" in the vicinity of which 
the basic "bifurcation acts" will take place. Note that even for the Duffmg oscillator this problem can 
only be solved by computer simulation of the original equations. 

The domains of  eristence and stability of subperiodic solutions. We will consider forced oscillations of 
a linear oscillator with impacts against stopping device described by the equations 

X "  + 2VX" + X = COSO)t, x < d (2.2) 

x'* = -Rx ' - ,  .~ = d (2.3) 

where d is the distance from the stopping device, v is the coefficient of viscous friction, x'- and x '+ are 
the velocities before and after the impact, and R E (0, 1) is the Newtonian coefficient of restitution. 

The solution of Eqs (2.2) and (2.3) as the Poincar6 mapping M1 = II(M0) from the half-plane x = 
d, x' < 0 into itself is spliced together from two parts: MoM-, a solution of the linear system (2.2), and 
M-M1, the impact interaction part (2.3) (Fig. 8). 

We consider the subperiodie solutions of order n with rn impacts within one period 0 = 2~n/to. We 
denote these by Fm, n, distinguishing between stable and unstable solutions Sin, n and Um, n if necessary. 
We set v = 0 initially, i.e. we consider only dissipativity due to the impacts failing to be entirely elastic, 
as long as this idealization does not lead to an "unusual" increment of some characteristics of the solution. 

The relation between the coordinates of the initial and final points to, x0 = d, x~ < 0 and h, xl = d, 
x'l < 0 can be written as 

d = Pt + ( d -  P0)costol  + (x~  - Pff)sin t01 

-x~ / R = P l ' - ( d -  P0)sin t01 +(x~ - P0')cos t01 (2.4) 

3;"  I 

M" .~ 

Mo 

T 
Fig. 8. 
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=cos to t i t ( l - to2) ,  tol =t l - t  o 

To find the subperiodie solutions In, 1 with one impact within a period we set 

x~ = x~, t I - t O = 2/tn / to = 0 (2.5) 

From (2.4) and (2.5) we obtain equations for the coordinates of the stationary point t~ xfi of the mapping 

( I -  zctg(O/2)) 2 + ( r - l ) 2 z  2 / (rto) 2 = X 2 / d  2 

sin toto = z(l - r -I )(I - to2)d / to 

X=ll-to21 -j ,  r = ( I + R ) / ( 2 R ) ,  z = r x ~ / d < O  

(2.6) 

To study stability we vary all the phase variables in (2.4) in the neighbourhood of the solution of Eqs 
(2.4)-(2.6). Setting &i = 7C~oc~ and &l = ;~St0, we arrive at the characteristic equation 

2~, 2 - k{(1 + R )  2 (to2S / Z + (1 - to2 )(1 + c ) ) -  R(1 + c) 2 } + 2R 2 = 0 (2.7) 

s = sin0, c =cos0 

In the case when (2.7) has complex roots the desired solution is always stable, since ~,1~2 = R 2 < 1. 
Therefore, as the parameters of the system are varied, loss of stability is possible only when X = 1 or 
~, = -1, i.e. on the bifurcation boundaries N+ and N_. 

To study the conditions for a solution of a piecewise smooth system to exist one must analyse the C- 
bifurcation boundaries. In the case under consideration the conditions for splicing the solution together 
can be reduced to verifying that no additional impacts occur within one period. In the neighbourhood 
of the C-boundary (2.1) there will be no additional impacts for the solutions Fn, 1 close to P(t) provided 
that n - 1 of the n maximum values ofx(t) within one period are less than d. In other words, the following 
inequalities must be satisfied 

x(tj) < d, x'(tj) = O, x"(t j )  < 0, j = 1,2 ..... n -  1 (2.8) 

The procedure described above leads to the system of inequalities [11] 

p.sin(2~n / to) < 0, Ix sin((n - j);r / to) sin(tic / to) cos0tn / to) < 0, 

v t = d l X - l ,  IBI'¢I, j = l , 2  ..... n - I  (2.9) 

Doubling bifurcation nodes with reorientation o f  the domain of  existence. We denote by Gn, m the domain 
in the parameter space in which the conditions of existence for Fn, m are satisfied. We consider the set 
of frequency intervals 

k<  1/ to<k+ 1/n, k=0 ,  i .... (2.10) 

The following assertion holds for the solutions of type Fn, 1 merging with the solution P(t) of the linear 
system for Ix = 0: in each of the intervals (2.10) there is a sequence of nodal points 

l l t o i = k + i l n i +  1, h i+  1 =2in, i = 1 , 2  . . . .  ( 2 . 1 1 )  

on the C-boundary IX = 0 that correspond to a doubling bifurcation with the domains G2n , l ,  G4n,1,  • • • 

appearing in the half-plane IX > 0 as I/to decreases. The reorientation of the domains of existence Gz~,l, 
G2n,1 . . . .  from the half-plane Ix > 0 to the half-plane Ix < 0 occurs at the same time. 

To prove this assertion we introduce a local parameter ei in the neighbourhood of each nodal point (2.11) 

Ei=llco-llo~ i, -llni+ I<F.i<llni+ I, i = 1 , 2  . . . .  ( 2 .12 )  

Then the period Oi of F.~,I is 
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0 i=2rmi /m,  i=1,2 .... 

and the trigonometric functions in (2.9) take the form 

(2.13) 

sin(2~.ni I to) = -s in(2•nie .  i ), cos(loci / (o) = (-1)l+,ik sin(/oziei ) 

sin(g(ni - j) / to) = (-1) (hi - j ) k  sin((ni - j)(F. i + 1 1 ni+ 1 )~)  

sin(j~ / to) = (-1)# sin(fit(ei + 1 / ni+ I )) 

Inside the intervals (2.12) containing e/ 

2nile.il<~l,. ( n i - j ) ( £ i + l / n i + l ) < l ,  j ( e . i + l / n i + l ) < l  

As a result, conditions (2.9) can be reduced to the inequality 

lae i > 0 (2.14) 

It follows that for e /=  0 the domain of existence Gni,1 is reoriented with respect to the IX axis (Fig. 9a). 
The complete picture of the domains Gn,1, G2,A,  • • • in t h e  interval under consideration can be obtained 

by superimposing the local pictures (Fig. 9b). When IX < 0, the number of possible solutions with impact 
increases without limit as the left end of each of the intervals (2.10) is approached. By replacing n by 4n, 8n . . . . .  
in (2.11), it can be shown that the reorientation of G4n,1, Gan,1 . . . . .  respectively, occurs at each of the nodal 
points (2.11). 

The structure of a bifurcation node. We will now investigate F~,,t in the vicinity of the nodal points 
(2.11). For I IX I, I e./I ~ 1 Eqs (2.6) and (2.7) take the form 

z2((lgni~.i)  2 +(1 - l / r )  2/to2)+2zlcniF.i +21.1.=0 (2.15) 

~2 _ ~ , (2R-  g n i E  i (1 + R) 2 0) 2 / z) + R 2 = 0 (2.16) 

In the neighbourhood of a node, from (2.15) we have two stationary points on the C-bifurcation 
boundary Ix = 0 when e /#  0 

Z I = O, Z2 = - 2 ~ n i E i  t.02r2 / ( r  - l) 2 < 0 

It follows that there are two solutions for ei > 0. The first solution U,,,, 1, which appears during a C- 
bifurcation, is unstable, since its characteristic equation implies that X -~ ~ as Zl ~ 0 for e / >  0. The 
other solution S,,,1, which does not undergo a C-bifurcation at Ix = 0, is stable and vanishes as Ix increases, 
merging with the unstable solution U,,~,I on the bifurcation boundary Ni+. The equation of Ni+ can 
be obtained from (2.15) and (2.16) with X = 1. It has the form 

-//a,.,,, 

(a) (b) 

i:::: 

Fig. 9. 
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(gnig i )2 r 2 
IX = 2(k + l / ni+ I )2(r  - l) 2 (2.17) 

Note that (2.17) can also be obtained without the characteristic equation (2.16) by equating to zero 
the discriminant of the quadratic equation (2.15). 

In the domain e./> 0, IX < 0 the solution Sn,,1 is unique. A loss of stability of this solution occurs for 
~. = -1 and is accompanied by the birth of the solution F2~ with double period. 

The substitution of ~. = -1 into (2.16) gives the bifurcation value z_l = ~nieito 2 < 0 in the domain ei 
< 0, Ix < 0 containing the desired boundary Ni_. From (2.15) with z = z_ we have 

+ ( r - l )  (Xni£i)2 1 
~t--- (k+l/ni+l) 2 2r  2 j (2.18) 

The C and N-bolmdaries found in the neighbourhood of the bifurcation node are represented by 
the solid lines in Fig. 10(a). In the general case, for oscillating systems with impacts the initial solution 
is known to lose stability when an additional impact occurs [12]. It can be seen in Fig. 10(a) that the 
solution Fn,, 1 with impacts appearing on the C-boundary !1 = 0 is unstable everywhere besides the nodal 
frequency value denoted by an asterisk. Along with this, it has been shown [13] that the solution with 
impact that occurs will be stable under the necessary conditions. In the case of an oscillator with impacts 
the aforesaid condition corresponds to the nodal frequency. This is easy to verify directly from 
the characteristic equation (2.16). Setting e /=  0, we obtain the equation g 2 - 2LR + R 2 = 0, the two 
roots of which are such that ~,1 = ~ = R < 1. 

We shall now consider the solution F2ni,1 of double period for e /<  0 and note that viscous friction 
must be taken into account in this case. Repeating the procedure for solving the original equations (2.2) 
and (2.3) for v ~ 1 we obtain the following equation for the coordinate x6 of the stationary point [11] 

ch(v0i+l  ) _ cos 0i+ I - 1 ]  2 +  

[ x°rsinOi+l ] 2 
+ 1 + l l -  d(ch(vOi+t)-c°sOi+l) = 1 (2.19) 

ipx @) 
",,.-.,, / 

• Uni• z . ." Unh • ~'+ 

SZni'l / X 

T 

Fig. 10. 
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On the C-boundary Ix = 0, in addition to the root x~ = 0, Eq. (2.19) also has a negative root in the 
interval -1/4n i < g/ < 0, since sgn(x~) = sgn(sin 0i+1). These roots correspond to two solutions: the 
unstable solution U2n~ 1 appearing during a C-bifurcation and the stable solution S2n~ 1. The two solutions 
merge and disappear on the boundary Nn+. The equation of the latter, which can be found from the 
condition for the discriminant of the quadratic equation (2.19) to be equal to zero, has the form 

I to sin 0i+ I ]2 
2IX ~- (1 COS Oi+ I )(1 -- 1 / r) - v(sin Oi+ I + Oi+ l ) 

(2.20) 

The boundary (2.20) lies above the axis IX = 0, starting and ending at the nodes e4 = -1/4ni, IX = O. 
In Fig. 10(a) it is represented by the dash--dot line. 

To complete the analysis of the structure of the ith node for the n i and 2n i subperiodic solutions one 
must make a "bifurcation joint" between the solutions S2nj,1 and Un/,1 in the domain g < 0, which exist 
for ei < 0, and the solution S~/,1, which exists for E i > 0 and has the bifurcation boundary N_ given by 
(2.18). The synthesis of the corresponding bifurcation band was considered in Section 1 (the structures 
L4 and L5 in Fig. 3). The complete picture of the two versions of the structure of the bifurcation node 
is shown in Fig. 10. The boundaries introduced for the joint are represented by the dashed lines. 

It is interesting to determine the universal constant [4, 14] of the bifurcation sequence as the parameter 
t~ or ( i /q )  passes through the bifurcation nodes for some initial value of n. In accordance with (2.11), 
we have 

!im ( t o i+ l  -- toi  ) / ( t o i + 2  -- t o i+ l  ) = 2 
l ---)oQ 

Doubling cascades with reorientation. The doubling cascades with reorientation described develop in 
the intervals (2.10), i.e. 1~to ~ (k, k+l /n )  fork  = 0, 1, 2 , . . . ,  as the parameters d and to vary along the 
C-boundary g = 0 (or d = X). The value ofn corresponds to the order of the initial subperiodic solution, 
which must be chosen to be odd, so that the subintervals already included in the intervals n/2 are not 
considered again. 

For each k, to the set of odd n there corresponds the set of intervals (2.10), inside of which the doubling 
cascades described will develop. These intervals overlap more and more as n increases. The overlapping 
intervals become condensed as i/to decreases, approaching the values 1/to = k, i.e. 

1 / to, = O, 1, 2 .... (2.21) 

In this case the structure of the trunk IX = 0 of the bifurcation tree becomes extremely complicated, 
which enables us to talk of the chaotic motion of the oscillator in half-neighbourhoods of the limiting 
nodal bifurcation points (2.21). The parametric portrait of the oscillator in the plane of I/to and IX is 
shown in Fig. 11. The starting points of cascades corresponding to the initial value n = 3 are denoted 
by an asterisk, the bifurcation boundaries being indicated by a dashed line. 

Comparison with the results of  a computer simulation. The visualization of the increasingly complex 
picture of possible motions obtained by computer simulation methods applied to the original system 
ought to become more practicable as the frequency interval under consideration approaches a resonance 
frequency. The point is that the dimensions of the domain of parameters along the d-axis will be 
determined by the values of laX in terms of absolute units. Therefore, bearing in mind the degree of 
simplicity of visualization of chaotic motion, the limiting nodes should be arranged in the following 
order: I/to. = 1, 2, 3 . . . . .  

The theoretical parametric portrait obtained above is consistent with the well-known results of the 
simulation of forced oscillations of an oscillator with impacts against a stopping device. For example, 
the half-neighbourhoods of the nodes 1/to. ---- 1, 2, 3, 4 are distinguished quite markedly by the complexity 
of the structure of the parameter plane: a simple two-state regime occurs on one side and limiting 
complexity on the other [15, Fig. 216a]. 

The parameter values for which numerous pictures of dosed phase space trajectories of solutions of 
type Sn,1 (F18, F21-F24, F34, F37-F40, F45, F46, F49-F53) have been obtained [15] lie in the corres- 
ponding domains shown in Fig. 11. 

In conclusion, we observe that the above results have been obtained by considering the initial single 
impact motions Fn, 1. If Fn,2, Fn,3, • • • are considered as the initial solutions, the trunk structure may 
well become more complex. For example, it turns out that in certain frequency intervals the domains 
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of existence of Fn~ ~dter their orientation with respect to the C-boundary Ix = 0, in complete analogy with 
the case of Fn 1 considered above [11]. 

This paper {s dedicated to the memory of Professor N. N. Bautin (1908-1993), an outstanding person 
and scientist. 
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